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A Note on Extended Gaussian Quadrature Rules 

By Giovanni Monegato* 

Abstract. Extended Gaussian quadrature rules of the type first considered by Kronrod are 

examined. For a general nonnegative weight function, simple formulas for the computation 

of the weights are given, together with a condition for the positivity of the weights associ- 

ated with the new nodes. Examples of nonexistence of these rules are exhibited for the 

weight functions (1 - x2)X-/2, e-X2 and e-X. Finally, two examples are given of quad- 

rature rules which can be extended repeatedly. 

1. Introduction. A quadrature rule of the type 

(l .l) | w(x)f(x) dx = E: A()ft( B) + ()i( + RX( ), 
a i=l j=1 

where in), i = 1, . . ., n, are the zeros of the nth-degree orthogonal polynomial iTn(X) 

belonging to the nonnegative weight function w(x), can always be made of polynomial 

degree 3n + 1 by selecting as nodes x (n), - 1 2, . . . , n + 1, the zeros of the poly- 
I 

nomial Pn + 1 (x), of degree n + 1, satisfying the orthogonality relation 

bk 
(1.2) ?W(X)(n(X)pn + 1 WXk dx = 0, k = 0, 1, ... , n. 

The polynomial Pn + 1(x) is unique up to a normalization factor and can be con- 

structed, for example, as described by Patterson [4]. Unfortunately, the zeros of 

Pn+ (x) are not necessarily real, let alone contained in [a, b] . We call (1.1) an extended 
Gaussian quadrature rule, if the polynomial degree is 3n + 1, and all nodes x(n) are real 

and contained in [a, b]. 
The only known existence result relates to the weight function w(x) = 

(1 - X2)X-?/2 , -a = b = 1, 0 < X < 2, for which'Szego [9] proves that the zeros of 

Pn+ 1(x) are all real, distinct, inside [-1, 1], and interlaced with the zeros An) of the 

ultraspherical polynomial 1Tn(x). 

Kronrod [3] considers the case X = 1/2 and computes nodes and weights for the 

corresponding rule (1.1) up to n = 40. For the same weight function, Piessens [6] con- 

structs an automatic integration routine using a rule of type (1.1) with n = 10. Further 
accounts of Kronrod rules, including computer programs, can be found in [8], [2]. 

Patterson [4] derives a sequence of quadrature formulas by successively iterating 
the process defined by (1.1) and (1.2). Starting with the 3-point Gauss-Legendre rule, 
he adds four new abscissas to obtain a 7-point rule, then eight new nodes to obtain a 

15-point rule and continues the process until he reaches a 127-point rule. The procedure 
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even carried one step further to include a 255-point rule, is made the basis of an auto- 
matic numerical integration routine in [5]. 

Ramsky [7] constructs the polynomial Pn + 1 (x) satisfying condition (1.2) for the 
Hermite weight function up to n = 10 and notes that the zeros are all real only when 
n = 1,2,4. 

In all papers [3], [4] and [5], all weights are positive; however in [7], for n = 4. 
two (symmetric) weights A(n) are negative. 

We first study a rule of type (1.1) with polynomial degree at least 2n and give 
simple formulas for the weights A(n) and B(n), together with a condition for the posi- 
tivity of the weights MO. We then construct the polynomial Pn + 1 (X) in (1.2) for the 
weight functions w(x) = (1 - X2)X /2 on [-1, 1], X = 0(.5)5, 8, w(x) = e-x2 on 
[-00, 00], and w(x) = e-x on [0, 00], in each case up to n = 20, and give examples in 

which Pn + 1 (x) has complex roots. We compute the extended Gaussian quadrature 
rules, whenever they exist, and give further examples of rules with negative weights 
A(n). Finally, we give two examples of quadrature rules which can be extended repeat- 
edly. 

2. The Weights A(n) and B(n). Let kn > 0 be the coefficient of xn in ir(x) 
and hn = fw(x)irn(x)dx. Consider a rule of type (1.1) with real nodes x(), i = 1, 2, 
... , n + 1, and polynomial degree at least 2n. Let qn + 1(x) = HAi7=f(x -X ()) and 
define Q2n+l(x) = 7rn(x)qn+1(x). We assume the two sets of nodes { =n)} L1 and 

fx(n)} n + 1 both ordered decreasingly. 
THEOREM 1. We have 

(2.1) BI k= ,(X(n)) = 1, 2, ... , n + 1, 

and all B(n) > 0 if and only if the nodes x(n) and (n) interlace. 
Proof. Applying (1.1) to fk(x) = 7rn(x)q 1(x)/(X- Xn k = 1, 2, ... , n + 1 

we obtain 

(2.2) 
b 

w(x)fk(x)dx = B- n)r(X( ))q' +1 (Xn)) = Bn ) 1(Xkn)) 

Since qn + 1(X)/(X - X n)) = Xn + t n - 1(x), where t,- 1(x) is a polynomial of degree at 
most n - 1, we have, by the orthogonality of 7rn(X), 

b b 
(2.3) Ja W(X)fk(x) dx = J w(x)irn(x)xn dx = hn/kn. 

Since hn/kn > 0, we see that Q2nI 1(4n)) = 0, and (2.1) follows from (2.2) and (2.3). 
Note in particular that the nodes x(n) are simple and distinct from the 4n). 

Assume now that the nodes x(n) and n) interlace, i.e., x1n) < t'n) < x$n) < 

* * * <uln) <x(n). Since the polynomial Q2n+ 1 vanishes precisely at the nodes x(n) 
and an), and by normalization, Q2n + 1 (X) > 0 for x > x(n), it is clear that the deriva- 
tive Q2n+1 will be alternately positive and negative at the nodes X( n), 242n), tn) 

hence, in particular; Q2 (X(n)) > 0, j = 1, 2, . . ., n + 1. By (2.1), there- 
fore, B(n) > 0. I 
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Vice versa, suppose the weights B(n = 1, 2, . . ., n + 1, are positive. Applying 
(1.1) to the function 

fi(x) = IT2(X)I((X ) )(x -n i- = 1, . 1, 

we obtain 

b ~~~~n+ 1 
(2.4) = Ja w(x)f(x) dx = B(n)f 

j=1I 

Since all the nodes x(n) are distinct from any an), the sum in (2.4) can be zero only 

if at least one of the numbers f1(X(n)) is negative. It follows that at least one node 

x say Xn), satisfies the inequality 

t(n)1 < x(n) < t(n), i=1...,n-1 

The existence of nodes x(n) > t(n) and x(n') < t(n) follows similarly by considering I I ~~n + n 

fo(x) = 7r2(x)/(&l) - x) and fn(x) = IT2(x)/(x - _n)), respectively. Having thus 

accounted for at least n + 1, hence exactly n + 1, nodes x(n), the interlacing property 

is established. 
THEOREM 2. We have 

(2-5) ~~A(n) = H(n) + 
h 

, tn))X i 1 

where MO are the Christoffel numbers for the weight function w(x). The inequalities 

(2.6) Ai(n) H(n)~~~i, i = 1, . . . , n, 

hold if and only if the nodes x(n and t(n) interlace. 
Proof Letting 

fi(x) = qn+1(x)irn(x)/(x- an)), i = 1, .. , n, 

in (1.1), we have 

(2.7) fbw(x)hi(x) dx = A (n) C ) 

Applying the n-point Gaussian rule to fi, and noting that the remainder is 

fl2n)(t Q)b ( () hn 

we find that 

(2.8) fw(x)fi(x) dx H(n)Q + h/k. 

From the last two relations, (2.5) follows, since again, Q2 +1(n)) n ? 

If the nodes x(n) and Xn) interlace, then Q2n+1(&n)) < 0 for all i, proving 

(2.6). Vice versa, if (2.6) holds, consider 

f4(x) = q2n +1 (x)/((x - x() )(-x-x(n))), j =1,..., 
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By applying (1.1) we have 

(2.9) fbW(X)fi(x) dx = A 

and from the n-point Gaussian rule, with remainder, similarly as above, 

(2.10) f| =~ H~w(x)fi(x)dx = n)fl(gn)) + h /k2. 
i=1 

By subtracting (2.9) from (2.10) we obtain 
n 

(2.11) E (H )n) - =- k2 < 0. 
i=l1 

Since MO -A(n) > 0, i = 1, . . , n, inequality (2.11) is possible only if at least one 
of the numbers f,((n)) is negative. This means that at least one tan), say t(n), satisfies 
the inequality 

X(n) < t(n) < X(n) j=1...,n, 

which, as before, implies the interlacing property. 
Clearly, Theorems 1 and 2 both apply to the extended Gaussian quadrature rules, 

if one chooses qn + 1 (x) = Pn + 1 (x). 

3. Numerical Results. We have constructed the polynomial Pn + l(x) satisfying 
condition (1.2) for w(x) = (1 - x2)X,- /2 X = 0(.5)5, 8, up to n = 20, by using an al- 
gorithm similar to the one described in [4]. When the zeros of these polynomials are 
all real, the corresponding weights A(n) and MO were computed by means of (2.1) and 
(2.5). For all rules thus obtained, the nodes always satisfy the interlacing property; 
nevertheless, in some cases we find negative weights A(n). Cases of complex zeros also 
occur. A brief list of the values of X and n, for which negative weights and complex 
zeros were observed, is reported in the following table (where k(i)l denotes the sequence 
of integers k, k + i, k + 2i, . . . ,1). 

X n (A (n) < 0) n (complex zeros) 

4 13, 15 

4.5 7(2)13, 16 15, 17, 19 
5 7, 9, 14, 16 11(2)19, 20 
8 3,5,6,8 7,9(1)20 

Similarly, we examined w(x) = e-x and w(x) = e-X, again up to n = 20. In the 
first case, studied already in [7] up to n = 10, we have confirmed that extended Gauss- 
ian rules exist only for n = 1, 2, 4. For the second weight function, when n = 1, the 
zeros of p2(x) are real, but one is negative, while for 2 < n < 20 some of the zeros 
are complex. 

4. Extended Gauss-Chebyshev Rules. The extension of Gauss-Chebyshev rules 
can be carried out explicitly by virtue of the identity 
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(4.1) 2 Tn (x)Un - 1 (x) = U2 n - 1 (x) 

where Tn(x) and Un(x) are the nth-degree Chebyshev polynomials of first and second 

kind, respectively. 
When w(x) = (1 -x2)- we may choose Pn+.(x) = 2+l(X2 - (X), 

n > 2, and (1.1) becomes the Gauss-Chebyshev rule of closed type (see for example [1]) 

(2 f( x)-x2f(x) dx = f [2 1(X(n)) + Af-1) + f(i )] Rn(f 
2n ~ ~~ ~~~~~~~ 2 2, 

n 2, 

where 

x(n) =cs2' i- 1, 2, ... ., 2n - 1. 

Pn+ 1(x) satisfies the required orthogonality condition (1.2) by virtue of (4.1). 
As a matter of fact, (1.2) holds for all k < 2n - 2, n > 2. Since the coefficients AO) 
B(n) are uniquely determined, they must be as in (4.2), which is known to have not 
only degree 3n + 1, but in fact degree 4n - 1. For n = 1 we have p2(x) = - 34 

and (1.1) coincides with the 3-point Gauss-Chebyshev rule. 
A natural way of iterating the process is to add 2n new nodes, namely the zeros 

of T2n(x), so that, by virtue of (4.1), the new rule will have as nodes the zeros of 

(X2 - 1)U4n - 1(x) and polynomial degree 8n - 1. In general, after p extensions, having 

reached a rule with 2Pn + 1 nodes, we add 2Pn new nodes, namely the zeros of 

T p (x), to get a rule of the type (4.2) with 2P+ 1n + 1 nodes and polynomial degree 

2P+2n - 1. 

In a similar way we may extend the Gaussian quadrature rule for the weight func- 

tion w(x) = (1 -x2)'/2. Recalling again (4.1), we choose pn+l(x) = 2-nTn+1(x), and 

obtain 

(4.3) ,fl(l _X2)2f(X) dx = 2(n+ 2n+1 
-(n)]2)X(n)) + R 

the Gaussian rule constructed over the 2n + 1 zeros 

x~n) = co 2f l+ i) i= 1, 2, . . ., 2n + 1, 2 s 
(n +1)' 

of the polynomial U2n+1(x). It has polynomial degree 4n + 1. As before, the process 

may be iterated. 
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